基于Keras图像相似度计算孪生网络

import keras
from keras.layers import Input,Dense,Conv2D
from keras.layers import MaxPooling2D,Flatten,Convolution2D
from keras.models import Model
import os
import numpy as np
from PIL import Image
from keras.optimizers import SGD
from scipy import misc
root_path = os.getcwd()
train_names = ['bear','blackswan','bus','camel','car','cows','dance','dog','hike','hoc','kite','lucia','mallerd','pigs','soapbox','stro','surf','swing','train','walking']
test_names = ['boat','dance-jump','drift-turn','elephant','libby']

def load_data(seq_names,data_number,seq_len):
#生成图片对
    print('loading data.....')
    frame_num = 51
    train_data1 = []
    train_data2 = []
    train_lab = []
    count = 0
    while count < data_number:
        count = count + 1
        pos_neg = np.random.randint(0,2)
        if pos_neg==0:
           seed1 = np.random.randint(0,seq_len)
           seed2 = np.random.randint(0,seq_len)
           while seed1 == seed2:
             seed1 = np.random.randint(0,seq_len)
             seed2 = np.random.randint(0,seq_len)
           frame1 = np.random.randint(1,frame_num)
           frame2 = np.random.randint(1,frame_num)
           path1 = os.path.join(root_path,'data','simility_data',seq_names[seed1],str(frame1)+'.jpg')
           path2 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed2], str(frame2) + '.jpg')
           image1 = np.array(misc.imresize(Image.open(path1),[224,224]))
           image2 = np.array(misc.imresize(Image.open(path2),[224,224]))
           train_data1.append(image1)
           train_data2.append(image2)
           train_lab.append(np.array(0))
        else:
          seed = np.random.randint(0,seq_len)
          frame1 = np.random.randint(1, frame_num)
          frame2 = np.random.randint(1, frame_num)
          path1 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed], str(frame1) + '.jpg')
          path2 = os.path.join(root_path, 'data', 'simility_data', seq_names[seed], str(frame2) + '.jpg')
          image1 = np.array(misc.imresize(Image.open(path1),[224,224]))
          image2 = np.array(misc.imresize(Image.open(path2),[224,224]))
          train_data1.append(image1)
          train_data2.append(image2)
          train_lab.append(np.array(1))
    return np.array(train_data1),np.array(train_data2),np.array(train_lab)


def vgg_16_base(input_tensor):
    net = Conv2D(64(3,3),activation='relu',padding='same',input_shape=(224,224,3))(input_tensor)
    net = Convolution2D(64,(3,3),activation='relu',padding='same')(net)
    net = MaxPooling2D((2,2),strides=(2,2))(net)

    net = Convolution2D(128,(3,3),activation='relu',padding='same')(net)
    net = Convolution2D(128,(3,3),activation='relu',padding='same')(net)
    net= MaxPooling2D((2,2),strides=(2,2))(net)

    net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
    net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
    net = Convolution2D(256,(3,3),activation='relu',padding='same')(net)
    net = MaxPooling2D((2,2),strides=(2,2))(net)

    net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
    net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
    net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
    net = MaxPooling2D((2,2),strides=(2,2))(net)

    net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
    net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
    net = Convolution2D(512,(3,3),activation='relu',padding='same')(net)
    net = MaxPooling2D((2,2),strides=(2,2))(net)
    net = Flatten()(net)
    return net


def siamese(vgg_path=None,siamese_path=None):
    input_tensor = Input(shape=(224,224,3))
    vgg_model = Model(input_tensor,vgg_16_base(input_tensor))
    if vgg_path:
       vgg_model.load_weights(vgg_path)
    input_im1 = Input(shape=(224,224,3))
    input_im2 = Input(shape=(224,224,3))
    out_im1 = vgg_model(input_im1)
    out_im2 = vgg_model(input_im2)
    diff = keras.layers.substract([out_im1,out_im2])
    out = Dense(500,activation='relu')(diff)
    out = Dense(1,activation='sigmoid')(out)
    model = Model([input_im1,input_im2],out)
    if siamese_path:
        model.load_weights(siamese_path)
    return model


train = True
if train:
   model = siamese(siamese_path='model/simility/vgg.h5')
   sgd = SGD(lr=1e-6,momentum=0.9,decay=1e-6,nesterov=True)
   model.compile(optimizer=sgd,loss='mse',metrics=['accuracy'])
   tensorboard = keras.callbacks.TensorBoard(histogram_freq=5,log_dir='log/simility',write_grads=True,write_images=True)
   ckpt = keras.callbacks.ModelCheckpoint(os.path.join(root_path,'model','simility','vgg.h5'),
                                       verbose=1,period=5)
   train_data1,train_data2,train_lab = load_data(train_names,4000,20)
   model.fit([train_data1,train_data2],train_lab,callbacks=[tensorboard,ckpt],batch_size=64,epochs=50)
else:
   model = siamese(siamese_path='model/simility/vgg.h5')
   test_im1,test_im2,test_labe = load_data(test_names,1000,5)
   TP = 0
   for i in range(1000):
      im1 = np.expand_dims(test_im1[i],axis=0)
      im2 = np.expand_dims(test_im2[i],axis=0)
      lab = test_labe[i]
      pre = model.predict([im1,im2])
      if pre>0.9 and lab==1:
        TP = TP + 1
      if pre<0.9 and lab==0:
        TP = TP + 1
   print(float(TP)/1000)

输入两张图片,标记1为相似,0为不相似。 损失函数用的是简单的均方误差,有待改成Siamese的对比损失。

总结:

1.随机生成了几组1000对的图片,测试精度0.7左右,效果一般。

2.问题   1)数据加载没有用生成器,还得继续认真看看文档    2)训练时划分验证集的时候,训练就会报错,什么输入维度的问题,暂时没找到原因  3)输入的shape好像必须给出数字,本想用shape= input_tensor.get_shape(),能训练,不能保存模型,会报(NOT JSON Serializable,Dimension(None))类型错误